
Writing plug-in filters for Termite 26 Feb 2016

Writing plug-in filters for Termite
Termite supports plug-in filters that allow you to filter, insert and modify any incoming or outgoing data. Filters 
allow you to give different representations of the data —for example in a graph, or to add functions that 
Termite does not support out-of-the-box.

To write a filter, you must create a DLL with a set of exported functions. The main purpose of this document is 
to describe those functions. For particular filters, tighter interaction with Termite is needed, and for those 
Termite defines two messages that your filter can send.

The extension of the DLL must be “.FLT” for Termite to recognize it as a filter. You should copy the DLL into to 
same directory as where the Termite program is itself.

If a filter does not use a particular function, it may omit it completely. For example, if your filter does not do 
anything special in function flt_Unload(), you may leave it out of the filter. However, a filter must have at 
least one of the following functions: flt_Receive(), flt_Transmit(), flt_Process() or 
flt_HotKey(). A filter that lacks all four of those, will not be loaded by Termite.

Functions

BOOL flt_Load(HWND hwnd, LPCSTR ProfileName, int Build)

This is the first function that Termite calls, after having loaded the filter DLL in memory.

hwnd The handle to the main window of Termite.
ProfileName The full path to the INI file that Termite uses. The filter can use this name to store its 

configuration.
Build The build number of Termite, for distinguishing versions of the Termite application.

Return This function must return TRUE if it can load successfully. If the function returns FALSE, 
Termite will unload it.

Notes To create a (toolbar) window in Termites interface, the plug-in filter must send the message 
UM_PLUGINWINDOW to the Termite main window from its flt_Load() function. For example:

SendMessage(hwnd, UM_PLUGINWINDOW, nnn, 0L);
The wParam parameter ("nnn" in the above example) is the height of the window (in pixels). 
The return value of the SendMessage() call is the window handle. Typically, a filter will 
subclass this window in order to receive notifications for any controls that it creates in it.

void flt_Unload(void)

After calling this notification function, Termite will physically unload the filter DLL. For filters that allocate 
dynamic memory or other resources, this is a good moment to free these resources.

int flt_Flags(void)

This function is called when Termite browses through all filters, at start-up. The returned flags give information 
about the filter. If this function is absent, the flags for the filter are assumed to be zero.

Currently defined flags are:

bit description
0 If set, the strings returned by this filter are in RTF format (not plain ASCII).
1 If set, data that is received on the primary port is run through the “receive” filters before being forwarded. By 

default, data is forwarded exactly as it is received.

1 / 3



Writing plug-in filters for Termite 26 Feb 2016

LPCSTR flt_Receive(LPCSTR Text, LPINT Size)

flt_Receive() is called after Termite has received new data. It is also called after not receiving data for some 
time-out (which is hard-coded to 0.5 second). If a plug-in filter buffers data internally, this time-out allows the 
filter to parse the remaining data. If local echo is active, the flt_Receive() function is also called for transmitted 
text (as if the transmitted text is looped back).

Text The contents of the received data.
Size On input, this parameter points to the size of the data block that parameter "Text" holds. 

Note that the data in "Text" may or may not be zero-terminated. On output, this parameter 
must hold the new size of the data block.
This parameter may be zero on input, so that the plug-in can pass any data that it had 
buffered internally to Termite.

Return If flt_Receive() does not change the string, it can return NULL or return the original string.
Otherwise, the function should return a pointer to a modified buffer (and store the size of that 
buffer in parameter “Size”).

Notes If the result of flt_Receive() is a shorter string than the input string, the function may 
change the string in place (but this is not encouraged). If the string changes (and especially if 
the result is bigger than the input string), the function should allocate memory for the modified
string. The function should also keep track of the allocated memory, because it must free the 
memory itself: either on a next call, or on flt_Unload(). It is suggested that the filter 
creates an auto-growing output buffer.
If the filter wishes to remove all data, it must set parameter "Size" to zero on output. It should
return a pointer to the input buffer (parameter "Text"); specifically, it should not return NULL.
The input and output strings are not necessarily zero-terminated; the filter must adjust the 
length to the number of bytes it returns (parameter "Size").
When a filter returns output in RTF format, it should only embed the formatting codes that it 
needs, such as “\b” for bold. The “{\rtf...” header and “}” trailer are provided by Termite 
itself. Additionally, the filter does not need to replace TAB characters in the input to “\tab” or to 
replace line-feed characters to “\line”. Termite performs these replacements.

LPCSTR flt_Process(LPCSTR Text, LPINT Size)

This function is an alias for flt_Receive(). The first version of Termite that offered plug-in filter support 
only provided filtering of received data —not of transmitted data. In the current version of Termite, the alias of 
flt_Process() is kept for backward compatibility with old filters. However, new filters should use 
flt_Receive() instead.

LPCSTR flt_Transmit(LPCSTR Text, LPINT Size)

flt_Transmit() is called before Termite transmits data that the user has typed in.

Text The contents of the data to be transmitted.
Size On input, this parameter points to the size of the data block that parameter "Text" holds. 

Note that the data in "Text" may or may not be zero-terminated. On output, this parameter 
must hold the new size of the data block.

Return If flt_Transmit() does not change the string, it can return NULL or return the original 
string. Otherwise, the function should return a pointer to a modified buffer (and store the size 
of that buffer in parameter “Size”).

Notes If the result of flt_Transmit() is a shorter string than the input string, the function may 
change the string in place (but this is not encouraged). If the string changes (and especially if 
the result is bigger than the input string), the function should allocate memory for the modified
string. The function should also keep track of the allocated memory, because it must free the 
memory itself: either on a next call, or on flt_Unload(). It is suggested that the filter 
creates an auto-growing output buffer.
If the filter wishes to remove all data, it must set parameter "Size" to zero on output. It should
return a pointer to the input buffer (parameter "Text"); specifically, it should not return NULL.

2 / 3



Writing plug-in filters for Termite 26 Feb 2016

The input and output strings are not necessarily zero-terminated; the filter must adjust the 
length to the number of bytes it returns (parameter "Size").

LPCSTR flt_HotKey(int vKey, LPCSTR Text, LPINT Size)

flt_HotKey() is called when the user types a function key in Termite.

vKey The virtual key code of the function key (e.g. VK_F1).
Text On entry, this is typically an empty string, but if another filter has also handled the same 

function key, there may be text stored in this parameter.
Size On input, this parameter points to the size of the data block that parameter "Text" holds. It is 

typically zero. Note that the data in "Text" need to be zero-terminated. On output, this 
parameter must hold the new size of the data block.

Return If flt_HotKey() does not handle the function key, it can return NULL or return the original 
string. Otherwise, the function should return a pointer to a buffer with the replacement text for 
the function key (and store the size of that buffer in parameter “Size”).

Notes It is up to the filter to decide how to respond to double definitions of the same function key. If a
filter detects that another filter has already handled the key (by inspecting parameter "Text"), 
it may either give a warning, or append its own definition to the text already present.

BOOL flt_Config(void)

flt_Config() is called when the user chooses to configure the filter. 

Return This function must return TRUE if the configuration was successfully changed, and FALSE if 
the user cancelled the operation or if there was an error.

Messages

UM_PLUGINWINDOW

Defined as (WM_APP + 1)
To create a window in Termites interface, the plug-in filter must send the message UM_PLUGINWINDOW to the 
Termite main window from its flt_Load() function. See function flt_Load() for details. The return value 
is the window handle. Note that sending this message when the filter is not in its “flt_Load()” state, does 
nothing.

UM_COMMHANDLE

Defined as (WM_APP + 2)
This message returns the handle of the serial port that Termite has opened. The wParam message parameter 
must be 0 to get the primary port handle, and 1 to get the “forward” port handle. If the requested serial port is 
not open, the result of this message is the value INVALID_HANDLE_VALUE.

UM_POSTHOTKEY

Defined as (WM_APP + 3)
Causes the string pointed to in lParam to be transmitted (as if it were typed in
by the user). The string must be zero-terminated.

3 / 3


